Convexity-preserving Flows of Totally Competitive Planar Lotka–volterra Equations and the Geometry of the Carrying Simplex

نویسندگان

  • STEPHEN BAIGENT
  • S. Baigent
چکیده

We show that the flow generated by the totally competitive planar Lotka–Volterra equations deforms the line connecting the two axial equilibria into convex or concave curves, and that these curves remain convex or concave for all subsequent time. We apply the observation to provide an alternative proof to that given by Tineo in 2001 that the carrying simplex, the globally attracting invariant manifold that joins the axial equilibria, is either convex, concave or a straight-line segment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems

We investigate the existence, uniqueness and Gaussian curvature of the invariant carrying simplices of 3 species autonomous totally competitive Lotka-Volterra systems. Explicit examples are given where the carrying simplex is convex or concave, but also where the curvature is not single-signed. Our method monitors the curvature of an evolving surface that converges uniformly to the carrying sim...

متن کامل

Smoothness of Carrying Simplices for Three-dimensional Competitive Systems: a Counterexample

For a dissipative totally competitive system of ODEs ẋ = xf (x), ∂f /∂x < 0, i, j = 1, 2, 3, on the nonnegative octant K in R for which 0 is a repeller, M. W. Hirsch proved the existence of an invariant unordered Lipschitz surface (the carrying simplex) attracting all points in K \{0}. We give an example (of a Lotka–Volterra type) showing that the carrying simplex need not be of class C. AMS (M...

متن کامل

On peaks in carrying simplices

A necessary and sufficient condition is given for the carrying simplex of a dissipative totally competitive system of three ordinary differential equations to have a peak singularity at an axial equilibrium. For systems of Lotka–Volterra type that result translates into a simple condition on the coefficients.

متن کامل

Global stability of interior and boundary fixed points for Lotka-Volterra systems

For permanent and partially permanent, uniformly bounded Lotka-Volterra systems, we apply the Split Lyapunov function technique developed for competitive Lotka-Volterra systems to find new conditions that an interior or boundary fixed point of a Lotka-Volterra system with general species-species interactions is globally asymptotically stable. Unlike previous applications of the Split Lyapunov t...

متن کامل

Multiple Limit Cycles for Three Dimensional Lotka-Volterra Equations

A 3D competitive Lotka-Volterra equation with two limit cycles is constructed. Keywords-Lotka-Volterra equations, Competitive systems, Limit cycles, Hopf bifurcation. INTRODUCTION It is a classical result (due to Moisseev 1939 and/ or Bautin 1954, see [l, p. 213, Section 12, Example 71 or [2, 18.21) that 2D Lotka-Volterra equations cannot have limit cycles: if there is a periodic orbit, then th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011